VE: Bringing value and innovation beyond the 11' lane

Greg Groves, PE Brent A. Sweger, PE, AVS

What is VE?

- Review of a project in design
- Multidisciplinary, independent team
- Systematic process
- Makes recommendations on:
 - Improving the function
 - Reducing the cost while retaining needed function

Why do it?

- Introduce creative or innovative solutions that may not have been considered
- Can confirm design elements
- Identify solutions based on changed conditions on long-term projects

Lessons Learned

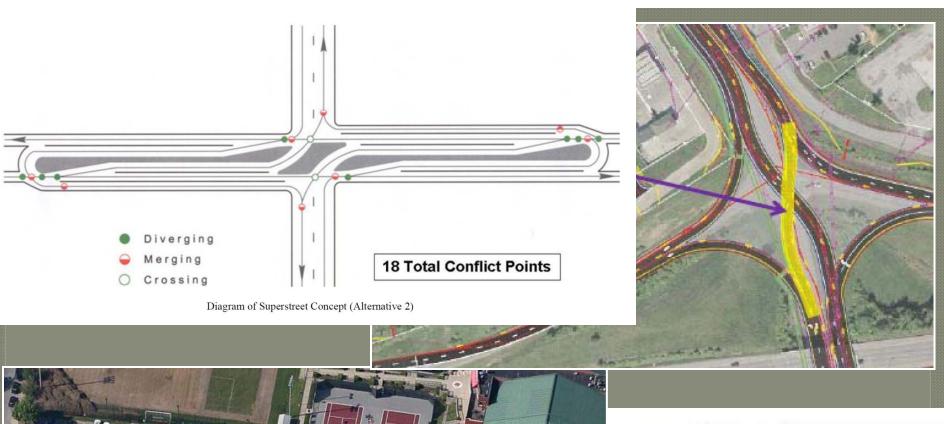
Traffic Forecasting: the foundation of project decisions

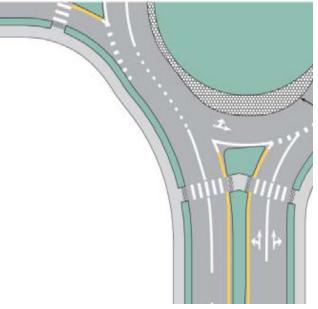
Annual Growth Rate	20 Year Growth Multiplier	Base Traffic	Forecast Traffic
1%	122%	8000	10000
2%	149%	8000	12000
3%	181%	8000	14500

Annual Growth Rate	20 Year Growth Multiplier	Base Traffic	Forecast Traffic
1%	122%	13000	16000
2%	149%	13000	19500
3%	181%	13000	23500

Annual Growth Rate	20 Year Growth Multiplier	Base Traffic	Forecast Traffic
1%	122%	180	220
2%	149%	180	270
3%	181%	180	330

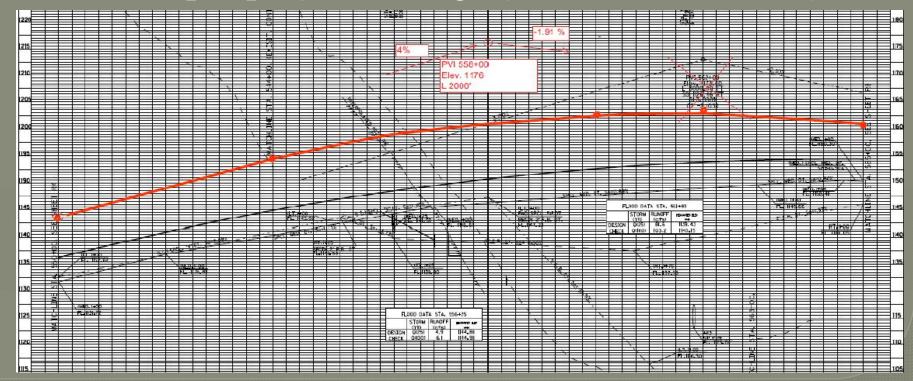
Traffic Forecasting: the foundation of project decisions

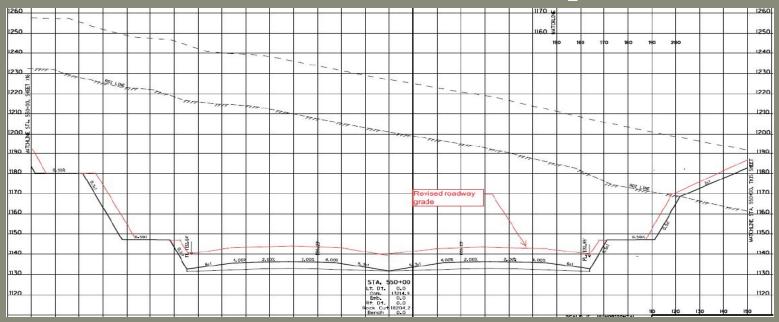



Which design is needed for a forecast ADT of 5,000 vpd? 10,000? 25,000?

Traffic Engineering: interchanges and intersections

Leg 1 RT Th LT	INTERSECTION ALTERNATIVE		OPERATION EVALUATION		MINIMUM LANE CONFIGURATION L3 L1 L4 L2 U						
0 800 250 KY348	2-W	/ay Stop Control*	Not Fea	asible							
LT 100 50 RT	4-Way Stop Control		Not Feasible							+	
g Th 300 350 Th	Signalized Intersection (1 lanes)		Not Fea]				
Roundabout	Feasible		24	20	5	\$	\$				
Median U-Turn (Signalized) (1 Lanes)		Not Feasible									
Median U-Turn (Signalized) (2 Lanes)		Feasible	1,r	1.r	1	r	1.r	t	ו	ภ	
Median U-Turn (Signalized) (3 Lanes)		Not Recommended	10	10	1.1	r	1.1.r	t	1	ค	
Median U-Turn (Unsignalized)*		Not Feasible									
Ped Leg 4 5	Ped Leg 4 5 Jughandle		Not Feasible								
		le A EB-WB (2 Lanes)	Feas	ible	11	11	tr	1,10			
	Jughand	le A EB-WB (3 Lanes)	Not Recon	nmended	3.3.P	33.7	117	111			
		Roundabout	Feas	ible	シチ	26	シチ	\$			
	Median U-Turn (Signalized) (1 Lanes)		Not Fea	asible							
	Median U-Turn (Signalized) (2 Lanes)		Feas		1.7	1.7	1,7	1.7	ภ	ภ	
	Median U-Turn (Signalized) (3 Lanes)		Not Recon		1,7	1,0	1.1.7	1.1.7	ค	ค	
	Median U-Turn (Unsignalized)*		Not Fea			+	+		+	+	
	Superstreet (Signalized)		Not Fea			+				+	
	Superstreet (Unsignalized)		Not Fea			+			 	+	
	Inside Left Turn (Signalized) (NB 'T') (1 Lane)		Not Fea	asible							

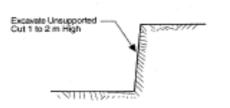



Making the Grade

- Common recommendation has been better earthwork balancing.
 - Example project savings (400,000 CY/\$1.3 M)

Making the Grade

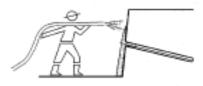
- Other benefits include:
 - Cost control by avoiding borrow or waste sites
 - Helps blend into existing topography
 - Less R/W and environmental footprint

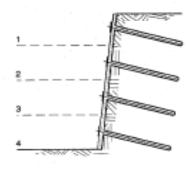

Structures:

Top Down Excavation Techniques

Soil Nail Walls

Soil Nail Walls


STEP 1. Excavate Small Cut


STEP 2. Drill Hole for Nail


STEP 3. Install and Grout Nail

STEP 4. Place Drainage Strips, Initial Shotcrete Layer & Install Bearing Plates/Nuts

STEP 5. Repeat Process to Final Grade

STEP 6. Place Final Facing (on Permanent Walls)

Figure 2.1 Typical Nail Wall Construction Sequence

Structures:

Top Down Excavation Techniques

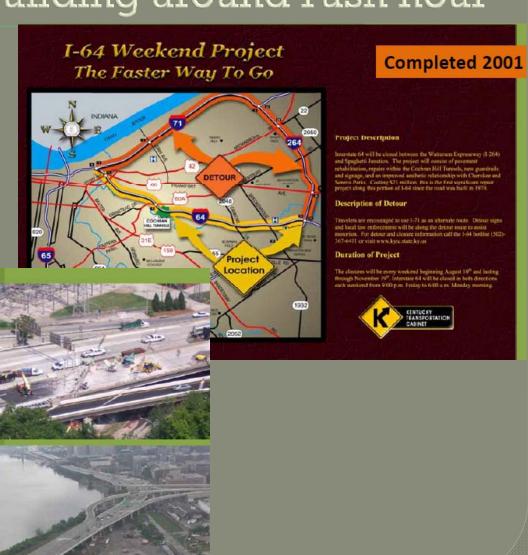
Soldier Piles and Lagging

MOT Plans:

building around rush hour

Full Closure Options

- KYTC's 1st Full Freeway
 Closure
- I-65 Closure
- Completed 2000



MOT Plans:

building around rush hour

Full Closures

- ® RESTORE 64 (I-64 Downtown)
- Full Closure 30 days
- © Completed 2008

MOT Plans:

building around rush hour

Accelerated Bridge Construction

Utility Avoidance: treat it like a 4f resource

Treat the utilities like 4f –

Avoid, Minimize, Mitigate (relocate)

Utility Avoidance: treat it like a 4f resource

Treat the utilities like 4f –

• Locate utilities early in Project Development

Utility Avoidance: Why Stand Around Waiting?

Considerations

- Understand the impacts to utilities are critical to staying on schedule & budget
- Think through the relocation time and costs for both public and private utilities.

Utility Avoidance: VE Study Recommendations

Cost control items:


- Consider pavement depths when determining underground utility impacts. (Geogrid may help in some cases)
- Set proposed profile grade above existing profile (MOT and utilities benefits)
- Develop preliminary traffic signal layouts early
- Weigh how the pavement depths (subbase level) will effect the ability to maintain property access during construction.

Wrapping it up

Keeping Perspective: Be Open Minded

- Outside perspective had an idea the Project Team had not considered.
- VE process has the same intent. The result can be innovation that may improve the design or reduce the cost of the project.

Thank You!

Questions?